

Available online at www.sciencedirect.com

Biochemical and Biophysical Research Communications 328 (2005) 342–347

www.elsevier.com/locate/ybbrc

A lipid dependence in the formation of twin ion channels

Lo'ay Al-Momani, Philipp Reiß, Ulrich Koert*

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Strasse, D-35032 Marburg, Germany

Received 14 December 2004 Available online 8 January 2005

Abstract

A gramicidin A derivative with a polyether linkage between both ethanolamine termini was synthesized and its ion channel properties were studied. The compound showed a duplication in the state of conductance for alkali cations in thick DOPC bilayer membranes, which is interpreted as the occurrence of twin-channels. In thinner DMPC membranes mono-channels were dominant. The influence of hydrophobic coupling on the mono channel/twin channel equilibrium is discussed.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Gramicidin A; Ion channel; Bilayer membrane; Twin-channel; Hydrophobic coupling

Although there is high lateral mobility in membranes, the lateral organization of integral membrane proteins can be of functional significance [1]. Protein clustering was observed, e.g., for ion channels [2]. Ion channels are suitable objects to study cluster effects, because their functional analysis can be performed easily by current measurements even on the single molecule level [3].

Gramicidin A (gA) is a prominent lead structure for ion-channel studies and ion-channel engineering [4,5]. gA, a peptidic antibiotic with 15 amino acids in length, is produced by *Bacillus brevis*, and consists of alternating L- and D-amino acids (Fig. 1A).

In membrane-like environments gA forms a head-to-head dimer of two right-handed single-stranded β -helices [6]. This structure with 6.3 residues per turn is the accepted ion-channel structure [7–9]. The channel-active gA dimer is via dissociation in equilibrium with the channel-inactive monomer. Compound 1 represents a gA derivative with a N-Boc protected aminodiethylene-glycol chain (in red) covalently connected to the aminoethanol endgroup. In a phospholipid bilayer, two molecules of 1 can associate to form the channel-active dimer 2. In single-channel current measurements, the

With the aim to study ion-channel clustering in membranes, we turned our attention to compound 3. In 3, two molecules of 1 are connected via a succinyl linker (in blue) (Fig. 2A).

A priori, there are two types of channel-active associates possible for compound 3 in a membrane (Fig. 2B). One is formed by the dimerization of one gA part only. We call this type of dimer the *mono-channel*. The other is formed by the dimerization of both gA parts. We call this type the *twin-channel*. The mono-channel and the twin-channel are in equilibrium. The mono-channel of 3 should show channel currents of the size found for 1, while the twin-channel should show channel currents of much larger size. The two observable types of channel formation could make compound 3 a structurally simple model system for channel clustering. Here, we present structural and functional results concerning the ion-channel activity and the mono-channel/twin-channel equilibrium of 3.

Materials and methods

Synthesis. Chemicals and reagents were purchased from Aldrich, Sigma, Fluka, and Bachem and used without further purifications. Solvents were purified by distillation. Compounds 1 and 3 were

association leads to an opening of the channel and the dissociation to a closing of the channel (Fig. 1B).

^{*} Corresponding author. Fax: +49 6421 2825677. *E-mail address:* koert@chemie.uni-marburg.de (U. Koert).

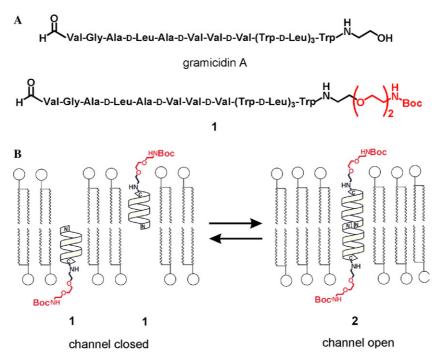


Fig. 1. (A) Structural formula of gramicidin A and 1; (B) equilibrium between the two channel inactive monomers 1 and the channel active dimer 2 in the membrane.

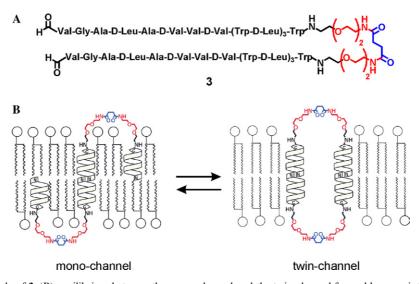


Fig. 2. (A) Structural formula of 3; (B) equilibrium between the mono-channel and the twin-channel formed by association of two molecules of 3 in the membrane.

synthesized by segment coupling in solution as described [10]. Analytical HPLC was performed with Rainin-Dynamax and Diode Array Detector, prep. HPLC with Rainin-Dynamax/SD1 and UV-Detector.

Ion channel activity. Planar lipid membranes were prepared by painting a solution of the lipid in *n*-decane (25 mg/ml) over the aperture of a polystyrene cuvette with a diameter of 0.15 mm [11]. All experiments were performed at ambient temperature. In the case of DMPC (14:1) 20% cholesterol was used as an additive to stabilize the bilayer. The cation solution at a concentration of 1 M was unbuffered. gA, compounds 1 and 3 were dissolved in methanol and added to both sides of the cuvette in homodimer single-channel measurements (end concentration in the cuvette 10^{-11} mol/L), while in the heterodimer

measurements, gA was added to one side and 3 to the other side. Current detection and recording were performed with a patch-clamp amplifier Axopatch 200B, a Digidata A/D converter, and pClamp6 software (Axon Instruments, Foster City, MA). The acquisition frequency was 5 kHz. The data were filtered with a digital filter at 50 Hz for further analysis.

Circular dichroism spectra. CD-spectra were recorded with Jasco-810 spectrometer. For the preparation of DMPC-micelles, the peptide (gA and 3) and DMPC were dissolved in TFE in a bear-shaped flask and sonicated at 50 °C for 30 min to obtain a homogeneous solution. The solvent was removed in vacuo to produce a thin film in the flask. Water was added and the mixture was sonicated at 50 °C for 30 min.

The clear micellar solution thus prepared should be used on the same day for CD-measurements.

Mass spectroscopy. Mass spectra were recorded with Applied Biosystems Q-Star under ESI-TOF conditions.

NMR. The NMR-spectroscopy data were recorded with Bruker instruments ARX-200, ARX-300, DRX-400, and DRX-500 spectrometers.

Results and discussion

Synthesis

The synthesis of 1 made use of our segment coupling strategy developed for the synthesis of **gA** derivatives [10]. Compound 3 was assembled as shown in Fig. 3A. The Boc-protecting group of 1 was cleaved producing the ammonium salt 4, which was treated with succinic anhydride and pyridine to produce 5. A HOAT/HATU coupling of 4 and 5 gave the target compound 3.

Compounds 1 and 3 were purified by gel filtration (10 g Sephadex LH-20, CHCl₃/MeOH 1:1) followed by HPLC (Fig. 3B) and characterized by ¹H NMR and ESI-MS (Supplementary data).

CD-measurements

The CD-spectrum of 3 in DMPC-micelles as lipid-environment indicates a gramicidin-like formation of a typical right-handed- β -helix. Compound 3 exhibits two maxima at 339 nm with and 220 nm typical for a right-handed single stranded β -helix (Fig. 4).

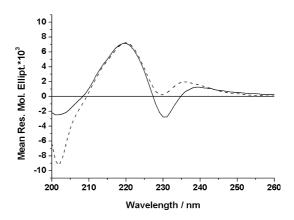


Fig. 4. CD-spectra of compound 3 (solid) and gA (dashed) in DMPC-micelles.

Single-channel current measurements

Single-channel measurements for Cs⁺ transport in diphytanoylphosphatidylcholine (DPhPC) planar lipid bilayers showed for 1 single-channel events of the size of gA (Fig. 5, left). These channels result from the formation of the channel-active dimer 2 through dimerization of two molecules of 1. In contrast, compound 3 exhibits single-channel events with nearly two times the size of 1. The double-transport capacity of 3 indicates the presence of the twin-channel in the DPhPC bilayer. Very rarely, mono-channels of half the size of the twin-channels were observed in DPhPC. These results show that the mono-channel/twin-channel equilibrium (Fig. 2B) is shifted strongly towards the twin-channel

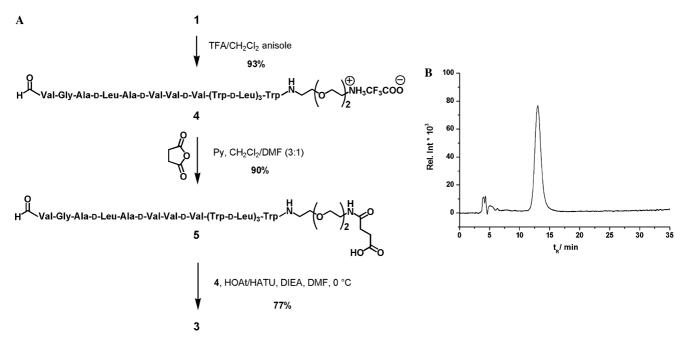


Fig. 3. (A) Synthetic route to 3; (B) HPLC chromatogram of 3. RP-C8, I: H₂O, II: CH₃CN/*i*-PrOH 2:1, $80\% \rightarrow 100\%$ II in 30 min, flow rate of 0.7 ml/min, T = 50 °C, and $\lambda = 280$ nm.

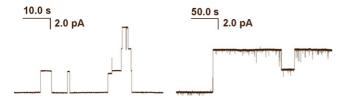


Fig. 5. Single channel trace of 1 (left) 3 (right) in DPhPC and $1\ M$ CsCl at $100\ mV$.

in DPhPC. The double number of intermolecular hydrogen bonds between the monomers favors the formation of the twin-channel form, while steric strain in the linker region may disfavor it.

Table 1 provides a comparison of the ion-channel properties of **3** with those of **1** and **gA**. The twin-channels from **3** have two times the size of the channels from **1** for K^+ and Na^+ , while in case of Cs^+ **3** exceeds the channels of **1** by 75% only. The relative ion permeabilities follow an Eisenman I sequence typical for **gA** [4].

It is instructive to compare these results with the work of Koeppe who studied the ion-channel behavior of **gA** derivatives which were covalently linked at the C-terminus via a peptide chain of different length [12]. A long 23-residue peptide linker was necessary to observe channels of the twin type in this case. Shorter linker led to the formation of mono-channels only. Our results show that twin-channel formation occurs nearly exclusively in DPhPC when short linkers of the flexible ethylene glycol type in 3 are used.

The hydrophobic coupling (match/mismatch) between the membrane and the channel can lead to functional consequences. Examples for a dependence of the channel function on the thickness of the phospholipid bilayer are known for **gA** and its derivatives [12–15]. A hydrophobic mismatch results in shorter dwell times [13]. The channel active **gA** dimer has a hydrophobic length of 22 Å. In order to study the hydrophobic coupling of the mono-channel/twin-channel equilibrium for 3, single-channel measurements were carried out in dimyristoleoylphosphatidylcholine (DMPC 14:1, Fig. 6A), dipalmitoleoylphosphatidylcholine (DPPC 16:1, Fig. 6B), and dioleoylphosphatidylcholine (DOPC 18:1, Fig. 6B). The channel characteristics for 1 were recorded for comparison reasons.

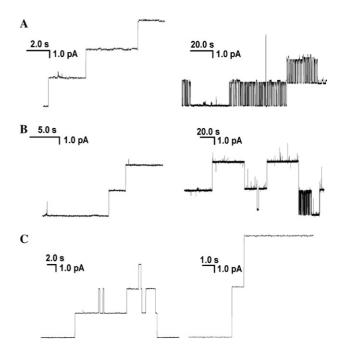


Fig. 6. Current traces for of 1 (left) and 3 (right) with 1 M CsCl at 100 mV in membranes of different thickness (A) DMPC 14:1; (B) DPPC 16:1; and (C) DOPC 18:1.

The effect of the membrane thickness on the mono-channel/twin-channel equilibrium is remarkable. Compound 3 forms mono-channels in the thinner DMPC bilayer but twin-channels in the thicker DOPC bilayer. In DPPC both channel types occur. Amplitude histograms of the single channel events underline this observation (Fig. 7).

The channel active **gA** dimer has a hydrophobic length of 22 Å. The hydrophobic thickness of DOPC (18:1) can be estimated to be 27 Å and that of DMPC (14:1) to be 22 Å [13]. Thus, DOPC (18:1) is too thick for the **gA** dimer. The twin-channel can withstand this hydrophobic mismatch better than the mono-channel, which may explain the dominant formation of the twin-channel in DOPC (18:1). In the case of DMPC (14:1) one expects a good hydrophobic match between the channel and the membrane. Now the mono-channel/twin-channel equilibrium is shifted towards the mono-channel. The driving force for this shift could be

Table 1 Ion channel characteristics of gA, 1, and 3

Compound	State of conductance Λ/pS			Relative permeability			Dwell time τ/s
	Cs ⁺	K^+	Na ⁺	Cs ⁺	K^+	Na ⁺	
gA	43.6	26.0	14.8	4.83	2.36	1.00	1.4
1	40.0	20.0	10.2	3.80	2.52	1.00	5.0
3	71.1	40.9	20.9	3.46	2.35	1.00	Several min

States of conductance (Λ/pS), and relative permeabilities of compounds **gA** in asolectine, **1**, and **3** in DPhPC and 1 M MCl electrolytes. Dwell times were determined in asolectine for **gA** and in DPhPC for **1** and **3**, and 1 M CsCl at 100 mV.

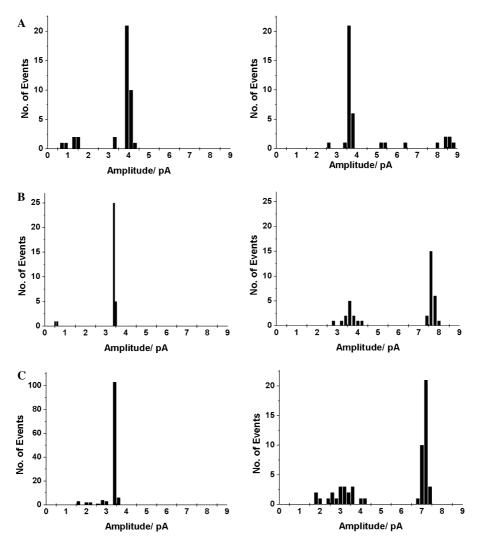


Fig. 7. Single-channel amplitude histograms for 1 (left) and 3 (right) with 1 M CsCl at 100 mV in membranes of different thickness (A) DMPC 14:1; (B) DPPC 16:1; and (C) DOPC 18:1.

steric strain linker region, which in the absence of hydrophobic coupling favors the mono-channel.

Asolectine is a naturally occurring phospholipid mixture, whose stiffness can be increased by addition of cholesterol [16]. Compound 3 shows in asolectine mono-channel behavior (Fig. 8A). In contrast, 3 exhibits twin-channels in asolectine/20% cholesterol (Fig. 8B). Addition of 20% cholesterol to asolectine is enough to

increase the membrane stiffness and to stabilize the twin-channel mode.

Compound 3 was studied with gA in heterodimer single-channel experiments. 3 was injected to one side of the membrane (10^{-11} mol/L) and gA to the other side (10^{-9} mol/L). DPhPC was used as a lipid. The flip-flop in DPhPC did not occur in the time frame of the single-channel experiments (30 min). It was expected to

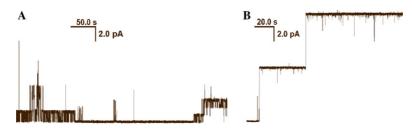


Fig. 8. Single-channel measurements of 3 in asolectine (A) and in asolectine/20% cholesterol (B) for 1 M CsCl at 100 mV.

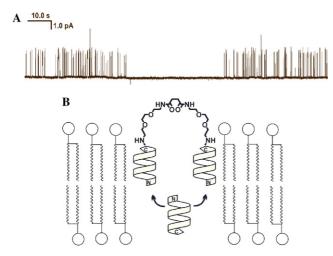


Fig. 9. (A) Current trace of the heterodimer 3 and gA in DPhPC and 1 M CsCl at 100 mV; (B) schematic drawing of the heterodimer of 3 and gA in the bilayer membrane.

detect two types of current transitions; one should be twin-channel-like transition amplitude and the other should provide **gA**-like transition amplitude. Surprisingly, just flicker channels were detected (Fig. 9A). The concentration of **gA** was increased to 10^{-6} mol/L but no twin-channel-like amplitudes could be detected.

No associate of long lifetime was observed in the heterodimer analysis. This result could be interpreted as a result of a fast exchange of gA monomer between both β -helices of the compound 3 (Fig. 9B), which yields these flicker channels.

Conclusion

In conclusion, a novel polyether linked gramicidin derivative 3 was prepared and its mono-channel/twin-channel equilibrium was studied in different phospholipid bilayers. In thin DMPC membranes the mono-channel is the main channel observed. Thicker DOPC bilayers and stiffer membranes favor the twin-channel. These results recommend compound 3 as a simple model system for further studies on the membrane dependence of channel clustering.

Acknowledgments

The authors are grateful to Deutscher Akademischer Austausch Dienst (DAAD), Deutsche Forschungsgemeinschaft (DFG), Fonds der Chemischen Industrie, and the VW-Stiftung for financial support.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bbrc.2004.12.170.

References

- [1] G. Vereb, J. Szöllosi, J. Matko, P. Nagy, T. Farkas, L. Vigh, L. Matyus, T.A. Waldmann, S. Damjanovich, Dynamic, yet structured: the cell membrane three decades after the Singer– Nicolson model, Proc. Natl. Acad. Sci. USA 100 (2003) 8053– 8058
- [2] S.H. Young, M. Poo, Topographical rearrangement of acetylcholine receptors alter channel kinetics, Nature 304 (1983) 161–163.
- [3] B. Hille, Ion Channels of Excitable Membranes, Sinauer, Sunderland, MA, 2001.
- [4] D.J. Chadwick, G. Cardew, Gramicidin and Related Ion-channel Forming Peptides, Wiley, Chichester, 1999.
- [5] R.E. Koeppe II, O.S. Andersen, Engineering the gramicidin channel, Annu. Rev. Biophys. Biomol. Struct. 25 (1996) 231–258.
- [6] R.R. Ketchem, W. Hu, T.A. Cross, High resolution conformation of gramicidin A in a lipid-bilayer by solid state NMR, Science 261 (1993) 1457–1460.
- [7] R.E. Koeppe II, F.J. Sigworth, G. Szabo, D.W. Urry, A. Woolley, Gramicidin channel controversy—the structure in a lipid environment, Nat. Struct. Biol. 6 (1999) 609.
- [8] T.A. Cross, A. Arseniev, B.A. Cornell, J.H. Davis, J.A. Killian, R.E. Koeppe II, L.K. Nicholson, F. Separovic, B.A. Wallace, Gramicidin channel controversy—revisited, Nat. Struct. Biol. 6 (1999) 610–611.
- [9] B.M. Burkhart, W.L. Duax, Gramicidin channel controversy reply, Nat. Struct. Biol. 6 (1999) 611–612.
- [10] H.D. Arndt, A. Vescovi, A. Schrey, J.R. Pfeifer, U. Koert, Solution phase synthesis and purification of the minigramicidin ion channels and a succinyl-linked gramicidin, Tetrahedron 58 (2002) 2789–2801.
- [11] A. Vescovi, A. Knoll, U. Koert, Synthesis and functional studies of THF-gramicidin hybrid ion channels, Org. Biomol. Chem. 1 (2003) 2983–2997.
- [12] R.L. Goforth, A.K. Chi, D.V. Greathouse, L.L. Providence, R.E. Koeppe II, O.S. Andersen, Hydrophobic coupling of lipid bilayer energetics to channel function, J. Gen. Phys. 121 (2003) 477–493.
- [13] H.D. Arndt, A. Knoll, U. Koert, Synthesis of minigramicidin ion channels and test of their hydrophobic match with the membrane, ChemBioChem 3 (2001) 221–223.
- [14] T.M. Weiss, P.C.A. van der Wel, J.A. Killian, R.E. Koeppe II, H.W. Huang, Hydrophobic mismatch between helices and lipid bilayers, Biophys. J. 84 (2003) 379–385.
- [15] M.R.R. de Planque, D.V. Greathouse, R.E. Koeppe II, H. Schäfer, D. Marsh, J.A. Killian, Influence of Lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidyl-choline bilayers. A ²H NMR and ESR study using designed α-helical peptides and gramicidin A, Biochemistry 37 (1998) 9333-9345
- [16] J.A. Lundbaek, P. Birn, J. Girhman, A.J. Hansen, O.S. Andersen, Membrane stiffness and channel function, Biochemistry 35 (1996) 3825–3830.